BRIEF COMMUNICATIONS

Ion-Exchange Reaction of Barium β -Alumina

N. IYI, S. TAKEKAWA, AND S. KIMURA

National Institute for Research in Inorganic Materials, Namiki 1-1, Sakura-mura, Niihari-gun, Ibaraki 305, Japan

Received October 26, 1984; in revised form February 4, 1985

Introduction

Systematic ion-exchange experiments on β -alumina (β -Al₂O₃) compounds were first reported by Yao and Kummer (1). Since then, the exchange reactions of Na⁺ in β -Al₂O₃ with other monovalent cations have been widely applied to prepare some β - Al_2O_3 which cannot be obtained directly. These facts show that ion-exchange reaction is very common to β -Al₂O₃ compounds. In the previous paper (2), we revealed barium hexaaluminate phase I to be of β -alumina structure and attributed the nonstoichiometry to the same "interstitial oxygen mechanism'' as was found in $M^{1+}\beta$ -Al₂O₃. If monovalent ion exchange Ba^{2+} in barium hexaaluminate phase I (Ba β -(Al₂O₃), then twice as many cations as Ba²⁺ would enter according to the reaction

$$Ba_{0.75}Al_{11.0}O_{17.25} + 1.5M^{+}$$

= $M_{1.5}Al_{11.0}O_{17.25} + 0.75 Ba^{2+}$ (1)

(where M^+ stands for monovalent cation).

The ion-exchange reaction of "BaO \cdot 6Al₂O₃" was previously reported by Toropov and Stukalova (3) in 1939, however, the reaction equation as well as the formula and structure of the starting material "BaO

• 6Al₂O₃" was not made clear at that time. We have made ion-exchange experi-

ments on Ba β -Al₂O₃ and BaMgAl₁₀O₁₇(Ba · Mg β -Al₂O₃) in order to obtain completely exchanged specimens for examination.

Experimental

Single crystals of Ba β -Al₂O₃ and Ba \cdot Mg β -Al₂O₃ grown by the floating zone method were used as the starting materials (4). Unless otherwise described, they were cut into about $0.4 \times 0.4 \times 0.4$ -mm³ cubes, which were treated with a large excess of molten salt (more than 300 times in weight) in a Pt crucible under air. The resultant crystals were examined by means of electron probe microanalyzer (EPMA) to check the extent of replacement. The powder X-ray diffraction data were obtained by a Philips diffractometer and the lattice parameters were calculated by the least-square method. To ascertain the retention of $P6_3/mmc$ space group symmetry during the ion exchange, the obtained specimens were examined by the precession photographs taken by using MoK α radiation. Density was measured according to the method of Archimedes.

In the previous paper, " $Ba_{0.79}Al_{10.9}O_{17.14}$ "

0022-4596/85 \$3.00 Copyright © 1985 by Academic Press, Inc. All rights of reproduction in any form reserved. was chosen as the formula of Ba β -Al₂O₃, but the result of wet chemical analysis (5) indicates that the formula "Ba_{0.75}Al_{11.0}O_{17.25}," which was derived from the structure analysis of Ba β -Al₂O₃ (2, 6), would be preferable. Hereafter we use "Ba_{0.75}Al_{11.0}O_{17.25}" as the formula of Ba β -Al₂O₃.

Result and Discussion

K⁺ Ion

Ba β -Al₂O₃. Ba β -Al₂O₃ exchanged successfully with molten K₂CO₃ at 980°C for 20 hr, giving transparent potassium β -Al₂O₃ crystals with the formula $K_{1,5}Al_{11,0}O_{17,25}$ $(\mathbf{K}_{1.5} \quad \beta - \mathbf{Al}_2\mathbf{O}_3)$ as can be expected from the reaction equation (1). They were free from cracks but very brittle. The remaining BaO was revealed to be only of the order of 0.1 mole% by EPMA. The crystal has hexagonal symmetry with the lattice parameters a = 5.599 Å, c = 22.73 Å, and X-ray powder diffraction data are shown in Table I. The density of 3.39 g/cm³ is well in accordance with the formula. The precession photographs showed the systematic absence of l = 2n + 1 for *hhl* reflections. where n is an integer. There were also observed diffuse superstructure reflections. but the average structure agreed with the $P6_3/mmc$ space group which β -alumina compounds usually take. When a specimen 1.5 mm in length perpendicular to the *c*-axis was used, the BaO content was unchanged near the center of the crystal under the same exchange condition. Treatment at the lower temperature of 600°C with molten KOH for 20 hr lead to only partial replacement in the periphery.

 $Ba \cdot Mg \beta - Al_2O_3$. K⁺ ion successfully replaced Ba²⁺ ion in Ba \cdot Mg β -Al₂O₃ when K₂CO₃ flux was applied for 20 hr at 980°C. The crystals lost transparency owing to tiny cracks. The compositions of the starting and resultant crystals, which were deter-

TABLE I

X-RAY POWDER DATA FOR K ⁺ -Exchanged				
Ba β -Al ₂ O ₃				

	<i>Du p</i> 11/203							
h	k	1	d _{obs}	d _{calc}	<i>I/I</i> 0			
0	0	2	11.382	11.369	85			
0	0	4	5.689	5.685	43			
0	1	2	4.462	4.461	16			
0	1	3	4.083	4.085	4			
0	1	6	2.987	2.986	5			
0	0	8	2.843	2.842	18			
1	1	0	2.800	2.800	26			
0	1	7	2.700	2.699	100			
1	1	4	2.511	2.512	42			
0	1	8	2.453	2.452	6			
0	2	1	2.411	2.411	23			
0	2	2	2.371	2.371	17			
0	0	10	2.275	2.274	14			
1	1	6	2.252	2.252	16			
0	2	4	2.231	2.230	12			
0	2	5	2.140	2.140	20			
0	1	10	2.060	2.059	3			
0	2	6	2.043	2.042	31			
0	2	7	1.943	1.943	16			
0	2	8	1.846	1.845	8			
1	2	2	1.812	1.810	3			
1	1	10	1.768	1.765	3			
0	2	9	1.749	1.749	3			
0	2	10	1.658	1.659	3			
0	1	13	1.645	1.645	2			
0	0	14	1.624	1.624	3			
1	2	7	1.596	1.596	17			
0	2	11	1.573	1.573	16			
1	1	12	1.569	1.569	16			
0	3	4	1.554	1.555	5			
0	1	14	1.540	1.540	3			
_								

mined by EPMA, are given in Table II. The starting material has a little Ba-deficiency. These data clearly show the equimolar interchange between BaO and K_2O , so the reaction equation could be written ideally as

$$BaMgAl_{10}O_{17} + 2K^{+} = K_2MgAl_{10}O_{17} + Ba^{2+}$$
(2)

The starting material Ba \cdot Mg β -Al₂O₃ have a typical β -alumina structure with a symmetry of $P6_3/mmc$ (7). The ion-exchanged product was also proved to have the same space group symmetry by the precession

TABLE II
Composition of Ba \cdot Mg β -Al ₂ O ₃ Before and After K ⁺ Exchange

	Composition (mole%) ^a				
Material	BaO	K ₂ O	MgO	Al ₂ O ₃	
$\mathbf{Ba} \cdot \mathbf{Mg} \ \boldsymbol{\beta} - \mathbf{Al}_2 \mathbf{O}_3$	13.75	_	13.85	72.40	
After K ⁺ exchange	0.32	13.53	13.31	72.84	

^a By EPMA.

camera. There appeared no reflections due to superstructure. The lattice parameters a = 5.641 Å and c = 22.64 Å were obtained by using 2 θ -data of 20 reflections collected on the four-circle diffractometer.

Na⁺ Ion

Ba β -Al₂O₃. Complete exchange of Ba²⁺ in Ba β -Al₂O₃ for Na⁺ was attained in the molten Na₂CO₃ at 980°C for 20 hr, yielding crystals with some tiny cracks. No remaining Ba²⁺ was detected by EPMA but Na content tended to vary because of the migration of Na⁺ ion during the analysis and/ or the inhomogeneity of the Na content in a specimen itself. On the average, the content of NaO was shown about 10-20% larger than that expected from the formula Na₁ ₅Al_{11,0}O_{17,25}. To determine the exact Na content, wet chemical analysis is now on progress, so in this paper it is tentatively as " $Na_{1.5}Al_{11.0}O_{17.25}(Na_{1.5})$ denoted β-Al₂O₃)." It possesses hexagonal symmetry with lattice parameters a = 5.591 Å and c =22.62 Å. X-Ray powder diffraction data are given in Table III. The retention of the space group symmetry $P6_3/mmc$ was confirmed by the precession photographs; density was 3.29 g/cm³. Exchange reactions were also undertaken on the specimen of 1.2 mm in length perpendicular to the caxis, yielding a completely exchanged crystal. This fact suggests the faster exchange rate as compared with the case of $K_{1.5} \beta$ - Al_2O_3 .

Treatment of Ba β -Al₂O₃ with excess

molten NaCl-NaNO₃ (3:7 mole ratio) for 72 hr at 650°C resulted in only partially exchanged crystals in the periphery. When $K_{1.5} \beta$ -Al₂O₃ was used instead of Ba β -Al₂O₃, Na⁺ ion replaced completely K⁺ in $K_{1.5} \beta$ -Al₂O₃ after 22 hr at 600°C. The resultant crystal remained transparent and free from cracks.

In conclusion, complete replacement of Ba²⁺ by monovalent cations was shown to take place according to the reaction equations (1) and (2) at least in the K⁺-exchange case. Furthermore, the retention of space group symmetry was proved for all ion-exchanged products. This means no alteration of the host lattice of β -alumina. Other β -Al₂O₃ compounds could be obtained by further ion exchange of K_{1.5} β -Al₂O₃ or "Na_{1.5} β -Al₂O₃," so this method would present a new route to prepare highly cation-excess $M^{1+} \beta$ -Al₂O₃.

TABLE III

X-RAY POWDER DATA FOR Na⁺-EXCHANGED Ba β -Al₂O₃

	,						
h	k	I	d _{obs}	$d_{\rm calc}$	<i>I/I</i> 0		
0	0	2	11.255	11.312	100		
0	0	4	5.632	5.656	51		
0	1	1	4.751	4.735	1		
0	1	2	4.464	4.451	4		
0	1	3	4.081	4.075	4		
0	0	6	3.755	3.771	1		
0	1	6	2.970	2.975	1		
0	0	8	2.814	2.828	4		
1	1	0	2.802	2.796	7		
0	1	7	2.682	2.688	18		
1	1	4	2.509	2.506	11		
0	1	8	2.435	2.442	3		
0	2	1	2.413	2.407	9		
0	2	2	2.373	2.367	3		
0	0	10	2.250	2.262	6		
1	1	6	2.246	2.246	7		
0	2	4	2.227	2.226	3		
0	2	5	2.136	2.135	6		
0	2	6	2.038	2.037	9		
0	2	7	1.937	1.938	5		
0	2	8	1.838	1.839	2		
1	2	7	1.592	1.593	5		
1	1	12	1.563	1.563	3		
0	3	4	1.553	1.552	1		
~							

Acknowledgments

The authors are much indebted to Mr. K. Kosuda for electron probe microanalysis of the samples, and to Dr. A. Ono for lending us the EPMA standards.

References

1. Y. F. Y. YAO AND J. T. KUMMER, J. Inorg. Nucl. Chem. 29, 2453 (1967).

- N. IYI, Z. INOUE, S. TAKEKAWA, AND S. KIMURA, J. Solid State Chem. 52, 66 (1984).
- 3. N. A. TOROPOV AND M. M. STUKALOVA, C.R. Acad. Sci. SSSR 24, 249 (1939).
- N. IYI, S. TAKEKAWA, Y. BANDO, AND S. KI-MURA, J. Solid State Chem. 47, 34 (1983).
- 5. Y. YAJIMA, unpublished data.
- F. P. F. VAN BERKEL, H. W. ZANDBERGEN, G. C. VERSHOOR, AND D. J. W. IJDO, Acta Crystallogr. Sect. C 40, 1124 (1984).
- 7. N. IYI, unpublished data.